Рабочая (основная) тормозная система

Главное предназначение рабочей тормозной системы заключается в регулировании скорости движения автомобиля вплоть до его полной остановки.

Основная тормозная система состоит из тормозного привода и тормозных механизмов. На легковых автомобилях применяется преимущественно гидравлический привод.

Устройство тормозной системы
Схема тормозной системы автомобиля

Гидропривод состоит из:

  • главного тормозного цилиндра (ГТЦ);
  • вакуумного усилителя;
  • регулятора давления в задних тормозных механизмах (при отсутствии АВS);
  • блока ABS (при наличии);
  • рабочих тормозных цилиндров;
  • рабочих контуров.

Главный тормозной цилиндр преобразует усилие, сообщаемое водителем педали тормоза, в давление рабочей жидкости в системе и распределяет его по рабочим контурам.

Для увеличения силы, создающей давление в тормозной системе, гидропривод оснащается вакуумным усилителем.

Регулятор давления предназначен для уменьшения давления в приводе тормозных механизмов задних колес, что способствует более эффективному торможению.

контуры тормозной системы
Виды контуров тормозной системы

Контуры тормозной системы, представляющие собой систему замкнутых трубопроводов, соединяют между собой главный тормозной цилиндр и тормозные механизмы колес.

Контуры могут дублировать друг друга или осуществлять только свои функции. Наиболее востребована двухконтурная схема тормозного привода, при которой пара контуров работает диагонально.

Механический тормоз

Механические тормоза стали применяться с появлением барабанных тормозных механизмов, устанавливаемых между колесом и его осью.

Состоял такой тип тормозов из механизмов, включавших в себя:

  1. Тормозной барабан;
  2. Колодки;
  3. Кулачковый вал и пружины, устанавливаемых на каждую ось колеса;
  4. Механизма управления, состоящего из системы тросиков и тяг.

Водитель при надобности воздействовал на механизм управления. Его усилие посредством тяг и тросиков передавалось на кулачковый вал.

Этот вал проворачивался и начинал разжимать колодки, заставляя их прижиматься к барабану. Возникающее трение замедляло вращение колеса.

Как рабочий тормоз такой тип привода уже не применяется, разве что в качестве стояночного тормоза он еще используется, но только на авто, оснащенных барабанными механизмами хотя бы на одной оси.

Какая тормозная система надежнее

  • Фейсбук
  • Твиттер
  • Гугл+
  • ЖЖ
  • ВКонтакте
  • Blogger

Многие задаются вопросом о том, какая тормозная система лучше и при каком её типе работа передних колес автомобиля будет эффективней. Считается что при многократных торможениях, носящих элементы экстренных, лучше использовать дисковые механизмы. Они лучше охлаждаются и проще обслуживаются, однако не эффективны в начале движения авто. Отлично себя показывают только в условиях скоростной езды.

  • Фейсбук
  • Твиттер
  • Гугл+
  • ЖЖ
  • ВКонтакте
  • Blogger

Барабанные модели актуальны при езде на грязных дорогам, поскольку элементы системы хорошо защищены от негативного воздействия окружающей среды. Их применение эффектно при спокойной езде.

Устройство системы и типы комплектующих элементов

  • Фейсбук
  • Твиттер
  • Гугл+
  • ЖЖ
  • ВКонтакте
  • Blogger

Основные элементы тормозной системы представлены в виде привода и конструктивного механизма. Комплексное их функционирование создаёт эффект, при котором наблюдается уменьшение скорости движения машины

Механизмы

Механизмы обуславливают замедление авто под воздействием сил трением. Установка тормозной системы автомобиля стояночного типа
проводится за коробкой передач.

Разбирая состав тормозной системы, можно увидеть, что его механизм состоит двух частей, одна из которых подвижна, а другая – нет. В зависимости от типа подвижно части элемента, различают барабанные и дисковые типы механизма.

Барабанный

  • Фейсбук
  • Твиттер
  • Гугл+
  • ЖЖ
  • ВКонтакте
  • Blogger

Устройство тормозных дисков, с механизмом барабанного типа, состоит из барабана и колодки, альтернативой которой является специфическая лента. Дисковое устройство тормозной системы обычно устанавливается производителем авто на передней и задней осях.

Дисковый

  • Фейсбук
  • Твиттер
  • Гугл+
  • ЖЖ
  • ВКонтакте
  • Blogger

Механическая тормозная система автомобиля дискового типа состоит из:

  • диска, обеспечивающего функционирование системы за счёт эффекта вращения;
  • колодок, отличающихся неподвижностью.

Усилие тормозного диска приводит к сильному нагреву элемента. Его охлаждение производится воздушным потоком. Для увеличения скорости отвода тепла предусмотрены отверстия. Колодки прижимаются к суппорту, а его пружинные элементы с накладками обеспечивают оптимизацию процесса трения элементов, за счёт чего производится приостановка транспорта.

Сравнительные характеристики

Барабанные тормоза проще и дешевле в производстве. Они обладают свойством, называемым – эффект механического самоусиления. То есть, при продолжительном давлении ногой на педаль многократно увеличивается тормозящее действие. Это происходит за счет того, что колодки нижними частями связаны друг с другом, и трение передней о барабан усиливает давление на него задней колодки.

Однако механизм дисковых тормозов меньше и легче. Температурная стойкость выше, они быстрее и лучше охлаждаются за счет предусмотренных отверстий-окон. И замена изношенных дисковых колодок производится намного проще, чем барабанных, что важно, если производить ремонт самостоятельно.

Краткий экскурс в историю

Как только было изобретено колесо, сразу же встал вопрос: как замедлить его вращение и сделать этот процесс максимально плавным. Первые тормозные механизмы выглядели очень примитивно – деревянный брусок, закрепленный на системе рычагов. При контакте с поверхностью колеса создавалось трение, и колесо останавливалось. Сила торможения зависела от физических данных водителя – чем сильнее нажимался рычаг, тем быстрее транспорт останавливался.

На протяжении многих десятилетий механизм дорабатывался: брусок обтягивали кожей, меняли его форму и положение возле колеса. В начале 1900-х годов появилась первая разработка эффективного автомобильного тормоза, правда, очень шумная. Более улучшенный вариант механизма предложил Луи Рено в том же десятилетии.

С развитием автоспорта в тормозную систему вносились значительные коррективы, так как у машин выросла мощность и вместе с тем скорость. Уже в 50-х годах ХХ века появились разработки действительно эффективных механизмов, обеспечивающих быстрое замедление колес спортивного транспорта.

На тот момент в автомобильном мире уже имелось несколько вариантов разных систем: и барабанные, и дисковые, и колодочные, и ленточные, и гидравлические, и фрикционные. Были даже электронные устройства. Конечно, все эти системы в современном исполнении сильно отличаются от их первых аналогов, а некоторые вообще не используются из-за своей непрактичности и низкой надежности.

В наши дни самой надежной системой является дисковая. На современных спортивных автомобилях устанавливаются большие диски, которые работают в паре с широкими тормозными колодками, а суппорты в них имеют от двух до 12 поршней. Кстати о суппорте: он имеет несколько модификаций и разное устройство, но это тема для другого обзора .

Бюджетные автомобили оснащаются комбинированной тормозной системой – спереди на ступицах закреплены диски, а на задних колесах – барабаны. Элитные и спортивные машины на всех колесах имеют дисковые тормоза.

Барабанные и дисковые исполнительные механизмы

Основная работа при торможении лежит на исполнительных механизмах, ведь именно они обеспечивают замедление вращения колеса.

В основу их работы положена сила трения, поэтому все тормозные механизмы на авто – фрикционного типа.

На автомобилях распространение получили два типа таких механизмов – барабанные и дисковые.

Каждый из них имеет свои конструктивные особенности, преимущества и недостатки.

Примечательно, что комбинирование их вполне приемлемо. Так, у многих авто все механизмы могут быть либо только барабанными (обычно на грузовиках), или только дисковыми (многие легковые авто).

Но также встречается и их комбинация – на передних колесах устанавливаются дисковые, а на задних – барабанные механизмы.

Тормозной механизм дискового типа.

Сейчас такой механизм все чаще используется, благодаря ряду преимуществ перед барабанным типом.

Конструктивно он состоит из нескольких элементов:

  • Диск;
  • Колодки;
  • Суппорт.

Диск выступает одной из фрикционных частей механизма и используется он для создания трения при торможении. Закреплен он на ступице и вращается с идентичной колесу скоростью.

Колодки – вторая фрикционная составляющая. За счет прижима их к диску, между этими элементами создается трение, которое обеспечивает снижение скорости вращения диска, а вместе с ним и колеса.

Для повышения силы трения, на колодках имеются специальные фрикционные накладки.

В конструкцию суппорта входит рабочий цилиндр привода. Именно эта составляющая обеспечивает прижим колодок.

Конструкции его бывают разные — как однопоршневая (наиболее распространена), так и двух двухпоршневая.

Выглядит конструкция этого механизма так: над диском закрепляется суппорт с поршнями, при этом рабочие поршни (один или два) располагаются перпендикулярно боковым поверхностям этого диска.

Между суппортом и двумя боковыми (рабочими) поверхностями диска помещены колодки. В расторможенном состоянии, между фрикционными составляющими имеется зазор, поэтому колодки не мешают вращаться диску.

Теперь немного о том, как срабатывают механизмы с однопоршневым и двухпоршневым суппортами.

В первом случае суппорт может смещаться по направляющим, что и позволяет одновременно прижимать обе колодки.

Действует это так: при возрастании давления в рабочем цилиндре, поршень выходит и начинает прижимать колодку. При этом создается обратное усилие, которое перемещает суппорт по направляющим.

Смещаясь, он корпусом начинает прижимать вторую колодку. В результате происходит выравнивание усилия прижима колодок с обеих сторон диска.

В двухпоршневом же суппорте, его перемещение не предусмотрено, поскольку каждую колодку прижимает свой поршень.

Устройство и работа барабанного тормозного механизма.

Конструкция барабанного исполнительного механизма отличается от дискового, причем кардинально.

Устройство его включает в себя:

  • Барабан;
  • Колодки;
  • Двухпоршневой рабочий цилиндр;
  • Щит;
  • Стяжные пружины.

Как и в случае с дисковым механизмом, у барабанного имеются две фрикционные составляющие, между которыми возникает трение при торможении. Здесь их роль выполняют барабан и две колодки, выполненных в виде полумесяца.

Читайте также:  Мотоциклы «Альфа» (Alpfa): технические характеристики, отзывы владельцев, фото. Мопед «Альфа» (110 куб.): технические характеристики, цены, отзывы

Барабан является подвижным элементом, он располагается на оси и вращается вместе с колесом. Неподвижным же элементом является щит с закрепленными на нем рабочим цилиндром (вверху) и опорой колодок (внизу).

Колодки (с фрикционными накладками) размещены так, что своими вершинами упираются в поршни цилиндра и опору.

Удерживают их в таком положении за счет стяжных пружин (вверху и внизу) и прижимов. Все элементы, располагающиеся на щите, получаются помещенными внутрь барабана, то есть они закрыты им.

Работает все очень просто: при нажатии на педаль, поршни выходят из цилиндра, и преодолевая усилие пружин, разводят колодки.

Это перемещение приводит к тому, что колодки начинают прижиматься к внутренней поверхности (рабочей) барабана, что и обеспечивает его замедление вращения.

При отпускании педали, пружины возвращают колодки в исходное положение.

Сравнительные характеристики.

Как уже отмечено, каждый из применяемых типов механизмов имеет свои достоинства и недостатки.

К положительным качествам дисковых механизмов относится:

  • Высокая эффективность;
  • Меньшее время на срабатывание;
  • За счет открытой конструкции обеспечивается вентиляция (механизм лучше охлаждается, а также отводятся продукты износа);
  • Быстрое удаление влаги;
  • Легкость разборки при обслуживании и ремонте.

Но вместе с тем, такие механизмы изнашиваются быстрее, поэтому их обслуживание, с заменой расходных материалов, нужно проводить чаще.

Открытая конструкция имеет и негативные стороны.

Во-первых, между колодкой и диском попадает больше сторонних частиц, что увеличивает скорость износа.

Во-вторых, влаге значительно проще попасть на рабочие элементы. При этом, если диск будет сильно разогрет, высока вероятность его коробления.

Также такие механизмы сложно использовать как элементы стояночной системы.

Что касается барабанных механизмов, то к их достоинствам относятся:

  • Большой ресурс без надобности замены расходных материалов;
  • Рабочие элементы защищены от попадания сторонних частиц (они закрыты);
  • Высокая устойчивость барабана к резким перепадам температур;
  • Возможность использования в качестве элемента стояночного тормоза (именно из-за этого очень часто такие механизмы используют на задних колесах).

Но такие тормоза менее эффективны, существует вероятность их отказа при сильном нагреве, обладают более сложной конструкцией, что осложняется ремонт.

К тому же, разрушение пружин или самих колодок может привести к заклиниванию механизма.

Запасная тормозная система

Запасная тормозная система служит для экстренного или аварийного торможения при отказе или неисправности основной. Она выполняет те же функции, что и рабочая тормозная система, и может функционировать и как часть рабочей системы, и как самостоятельный узел.

Обслуживание тормозных дисков и колодок

Износ и замена дисков

Износ тормозных дисков напрямую связан со стилем вождения автомобилиста. Степень износа определяется не только километражем, но и ездой по плохим дорогам. Также на степень износа тормозных дисков влияет их качество.

Минимально допустимая толщина тормозного диска зависит от марки и модели транспортного средства.

Среднее значение минимально допустимой толщины диска передних тормозов – 22-25 мм, задних – 7-10 мм. Это зависит от веса и мощности автомобиля.

Основными факторами, указывающими на то, что передние или задние тормозные диски необходимо менять, являются:

  • биение дисков при торможении;
  • механические повреждения;
  • увеличение тормозного пути;
  • снижение уровня рабочей жидкости.

Износ и замена колодок

Износ тормозных колодок, прежде всего, зависит от качества фрикционного материала. Немаловажную роль играет и стиль вождения. Чем интенсивнее будет торможение, тем сильнее износ.

Передние колодки изнашиваются быстрее задних за счет того, что при торможении они испытывают основную нагрузку. При замене колодок лучше менять их одновременно на обоих колесах, будь-то задние или передние.

Неравномерно могут изнашиваться и колодки, установленные на одну ось. Это зависит от исправности рабочих цилиндров. Если последние неисправны, то они сдавливают колодки неравномерно. Разница в толщине накладок в 1,5-2 мм может говорить о неравномерном износе колодок.

Существует несколько способов, позволяющих понять, нужно ли менять тормозные колодки:

  1. Визуальный, основанный на проверке толщины фрикционной накладки. На износ указывает толщина накладки в 2-3 мм.
  2. Механический, при котором колодки оснащаются специальными металлическими пластинками. Последние по мере истирания накладок начинают соприкасаться с тормозными дисками, из-за чего скрипят дисковые тормоза. Причиной скрипа тормозов является истирание накладки до 2-2,5 мм.
  3. Электронный, при котором используются колодки с датчиком износа. Как только фрикционная накладка сотрется до датчика, его сердечник соприкоснется с тормозным диском, электрическая цепь замкнется и загорится индикатор на приборной панели.

Диагностика и неисправности тормозной системы

Неисправности тормозного привода или механизма могут быть самыми разными. И каждый из них может стать сигналом нескольких проблем:

  • При торможении траектория движения начинает непредсказуемо изменяться, непонятная сила «уводит» авто в сторону. Это может свидетельствовать о загрязнении или поломке колодок с одной стороны, заклинивании поршня главного цилиндра, повреждении подвески, рулевого управления, ослабевших или изношенных стяжных болтах рессор. Также такое «поведение» автомобиля возможно при неисправности гидроклапана антиблокировочной системы. Для обнаружения этой неисправности на каждое колесо нужно установить манометры. Если будет обнаружен значительный перепад давления, это прямое указание на такую неисправность.
  • Свободный ход педали существенно увеличивается. Такая проблема чаще всего возникает при неисправностях главного рабочего цилиндра, вакуумного усилителя. Если применяется  гидравлический привод, то к такой проблеме также может привести его завоздушивание.
  • Педаль при нажатии «проваливается», становится «мягкой». Это опять-таки может быть и сигналом появления воздуха в гидравлическом приводе, и сигналом износа главного цилиндра либо повреждения шлангов и трубопроводов.
  • Педаль «стопорит», для нажатия приходится прикладывать огромные усилия. Очень часто это вызвано, некорректно установленными  колодками  или неправильно присоединёнными шлангами (стоит только их демонтировать и поставить правильно – проблема тут же решится), повреждение контуров гидропривода. Также иногда это прямая реакция на заклинивший поршень в колёсном цилиндре. 
  • При торможении чувствуется биение, вибрации: со стороны педали или со стороны педали и руля. Как правило, это ответная реакция на коробление диска, ослабленное крепление суппорта или износ одного из элементов рулевого управления, подвески.
  • Колодки быстро стираются под углом. Главные виновники – неисправные суппорты.

Появление одного или сразу нескольких из перечисленных явлений чревато быстрым выходом из строя системы в целом и поэтому с диагностикой и ремонтом нельзя затягивать.

Стояночная тормозная система

Схема стояночного тормоза
Схема стояночного тормоза

Основными функциями и назначением стояночной тормозной системы являются:

  • удержание транспортного средства на месте в течение длительного времени;
  • исключение самопроизвольного движения автомобиля на уклоне;
  • аварийное и экстренное торможение при выходе из строя рабочей тормозной системы.

Приводы

Надежность тормозных систем зависит от состояния привода. Устройство отвечает за обеспечение управления конструкцией торможения. В зависимости от принципов работы, лежащих в её основе, различают несколько видов устройств.

Механическое

  • Фейсбук
  • Твиттер
  • Гугл+
  • ЖЖ
  • ВКонтакте
  • Blogger

Принцип работы тормозной системы с механическим приводом заключается в её активировании при нажатии на ножную педаль или использовании стояночного тормоза, приводящего в действие остальную конструкцию, функционирование которой направлено на блокировку колес. Рычаг тормоза соединяется с конструктивными механизмами задних колес.

Гидравлическое

  • Фейсбук
  • Твиттер
  • Гугл+
  • ЖЖ
  • ВКонтакте
  • Blogger

Тормозная педаль служит для передачи усилия водителя при её нажатии к главному цилиндру. В главном цилиндре увеличивается давление, за счёт чего тормозная жидкость перемещается к колёсным цилиндрам. В случае потерь жидкости, её можно пополнить через специальный отсек, расположенный над устройством.

Гидравлическая тормозная система автомобиля срабатывает при прижатии колодок к диску. На современных моделях транспортных средств для обеспечения стабилизации работы, устанавливаются антиблокировочные устройства.

Антиблокировочная система

При экстренном торможении транспортного средства часто происходит блокировка одного или нескольких колёс. Это может привести к проскальзыванию колес, к потере управляемости водителя автомобилем и к преждевременному износу устройства торможения. Применение антиблокировочного механизма позволяет избежать всех неприятностей, а также уменьшить длину тормозного пути, а также улучшить маневренность

Пневматическое, для грузового автомобиля

Пневматический привод обычно применяется для грузовых автомобилей, поскольку позволяет при минимальной силе, прикладываемой к тормозной педали получать больше влияние на конструктивные элементы. Его редко применяют для легковых автомобилей. Некоторые производители внедорожников для большей эффективности транспортного средства предпочитают устанавливать тормозное оборудование с пневматическим приводом.

Деление систем на независимые контуры

Тормозные системы могут быть одноконтурными, двухконтурными и многоконтурными.
У одноконтурных решений магистрали всех колёс – передних и задних объединены в одну ветвь, для управления воздухом используется всего один кран. Решение дешёвое, не крайне ненадёжное . На практике его сейчас можно встретить только на некоторых сельскохозяйственных машинах и прицепах с пневматикой, причём речь идёт только о старых моделях машин, новые решения с пневмоприводом ориентированы на несколько контуров.
Если же речь идёт о решениях с гидроприводом, то весьма вероятна   разгерметизация, и жидкость вытечет из системы. И здесь об использовании одного контура и вовсе не может быть и речи. Предотвратить риски помогает наличие нескольких контуров. Даже если произойдёт разгерметизация одного из них, хоть и возникнет потеря эффективности, катастрофы можно будет избежать. Ведь контуры подстраховывают друг друга.
Самый распространённый вариант – наличие двух контуров. При этом схемы разделения гидропривода на 2 контура могут быть очень разными:

  • 2 +2, параллельное подключение. 1-й контур действует на тормоза передней оси, второй — на заднюю ось). Недостаток—задняя ось обеспечивает не более 40% тормозных сил. Поэтому, если исправен только 2-й контур, длина тормозного пути (ТП) увеличится в 2,5-3 раза. 
  • 2+ 2 – диагональное подключение. 1-й контур действует на правое переднее и левое заднее колёса, а второй — на левое переднее и правое заднее.
  • Подходит для переднеприводных машин. Неисправность любого из контуров чревата увеличением ТП в два раза.
  • 4 + 2. 1-й контур действует на все колеса, а второй — только на передние.
Читайте также:  Как сделать регулятор оборотов коллекторного двигателя 220В своими руками: схемы. Плата регулировки оборотов двигателя без потери мощности своими руками

Наиболее безопасно, с точки зрения опытных автомехаников, диагональное деление (эффективности удаётся  достичь, даже если один из контуров поврежден) и схема разделения 4 + 2.
У грузовых автомобилей, автобусов часто может встречаться 4 и 5 контуров. Это сложные, но очень надёжные конструкции. У каждого контура— своя «зона ответственности (например, передняя ось, задняя тележка, стояночный, аварийное растормаживание), при этом каждый контур независим. Это возможно благодаря присутствию в конструкции специальных разделяющих клапанов. 
Многоконтурная пневмосистема оптимизирует уровень устойчивости крупногабаритного транспортного средства, процесс управления им. Кроме того, пневматическая система позволяет без опасения потери рабочего тела подключать и отключать пневмосистемы тягача к прицепу или полуприцепу. При отсоединении прицепа автоматически срабатывает стояночная топливная система.

Схема дисковых тормозов

Дисковый тормозной механизм состоит из тормозного диска, который закреплен на колесе и вращается вместе с ним, двух неподвижных колодок, которые установлены внутри суппорта по обе стороны от тормозного диска.

Суппорт крепится на кронштейне. На суппорте, в его пазах также крепятся рабочие цилиндры, которые во время торможения прижимают тормозные колодки к диску.

Тормозные колодки после отпускания педали тормоза возвращаются в исходное положение пружинными элементами.

Тормозной диск в процессе торможения, под воздействием сил трения сильно нагревается. Охлаждение тормозных дисков происходит за счет конвективного омовения потоком воздуха. Для улучшения отвода накапливаемого диском тепла в нем делаются специальные отверстия и в этом случае диск является вентилируемым. Для еще большего повышения эффективности процесса торможения и нивелирования последствий перегрева диска на спортивных и скоростных автомобилях устанавливают тормозные диски, изготовленные с применением специальных керамических материалов.

Тормозной привод служит для обеспечения управления всеми составляющими тормозного механизма. В современных тормозных системах применяются такие типы тормозных приводов: механический, пневматический, гидравлический, электрический и комбинированный.

Механический привод применяется в стояночной тормозной системе (ручник). Механический привод — это система тяг, тросов и рычагов, которые служат для соединения рычага стояночного тормоза с тормозным механизмом задних колес автомобиля.

Существует также система механического привода стояночного тормоза, приводимая в действие с помощью ножной педали.

Гидравлический привод является наиболее распространенным типом привода в рабочей системе тормозов. Конструкция гидравлического привода включает: педаль тормоза, главный тормозной цилиндр, вакуумный усилитель тормозов, рабочие цилиндры, шланги и трубопроводы.

Принцип работы гидравлического привода тормозов описан чуть выше.

Для обеспечения надежности тормозной системы работа гидравлического привода организуется по двум (как правило) независимым контурам. При поломке одного контура, его функции берет на себя другой контур. Рабочие контуры могут дублировать функции друг-друга либо выполнять часть какую-то часть функций второго контура. Возможно также и выполнение каждым контуром строго своих функций. Наиболее распространенной является диагональная схема работы контуров.

Пневматический привод используется преимущественно в тормозной системе грузовых автомобилей.

Комбинированный тормозной привод, как следует из названия, представляет собой сочетание (комбинацию) двух видов привода (электропневматический, например).

Далее скажем пару слов о дополнительных системах, которые делают автомобиль более безопасным…

Анти-блокировочная система ABS, предназначается для предотвращения блокирования колес автомобиля во время очень сильного нажатия на педаль тормоза, что позволяет избежать движения юзом, и сохранить контроль над автомобилем. В состав системы ABS (Antilock Brake System) входят три элемента – это датчик измерения скорости, который устанавливается на каждом колесе, модулятор давления тормозной жидкости и блок управления системой ABS.

Система TCS создана на основе системы ABS и предназначена для предотвращения пробуксовывания колес во время слишком резкого старта или на скользкой дороге. Система (Traction Control System) существует и под названиями: ASR, ASC, ETS. Она отличается от системы ABS только наличием модифицированного блока управления.

ESP. Еще одной полезной системой, которая может устанавливаться на автомобиле, является система электронной стабилизации колес ESP. Эта система работает в повороте, причем его угол и скорость не имеют значения, при возникновении заноса задней оси автомобиля, ESP (Electronic Stability Program) обеспечивает подтормаживание переднего наружного колеса. В такой ситуации образуется стабилизирующий момент, возникающий между колесами автомобиля, который возвращает движущийся автомобиль на безопасную траекторию.

Устройство тормозной системы автомобиля

Общий вид системы
Тормозная система

Основой тормозной системы являются тормозные механизмы и их приводы.

Тормозной механизм служит для создания тормозного момента, необходимого для торможения и остановки транспортного средства. Механизм устанавливается на ступице колеса, а принцип его работы основан на использовании силы трения. Тормозные механизмы могут быть дисковыми или барабанными.

Конструктивно тормозной механизм состоит из статичной и вращающейся частей. Статичную часть у барабанного механизма представляет тормозной барабан, а вращающуюся – тормозные колодки с накладками. В дисковом механизме вращающаяся часть представлена тормозным диском, неподвижная – суппортом с тормозными колодками.

Управляет тормозными механизмами привод.

Гидравлический привод не является единственным из применяемых в тормозной системе. Так в системе стояночного тормоза используется механический привод, представляющий собой совокупность тяг, рычагов и тросов. Устройство соединяет тормозные механизмы задних колес с рычагом стояночного тормоза. Также существует электромеханический стояночный тормоз, в котором используется электропривод.

В состав тормозной системы с гидравлическим приводом могут быть включены разнообразные электронные системы: антиблокировочная, система курсовой устойчивости, усилитель экстренного торможения, система помощи при экстренном торможении (Brake Assist System).

Существуют и другие виды тормозного привода: пневматический, электрический и комбинированный. Последний может быть представлен как пневмогидравлический или гидропневматический.

Электронные системы торможения

Экстренное торможение — особенно при неблагоприятных погодных условиях — порой приводит к блокировке колес и неконтролируемому заносу автомобиля. Во избежание такого сценария машины оснащаются антиблокировочной системой, или ABS (англ. anti-lock braking system). Расположенные на колесах датчики блока ABS «видят» риск такой блокировки и система не позволяет колесам «встать колом».

Также помогает водителю в деле торможения электронная системараспределения тормозных сил — EBD (англ. electronic brake distribution). Она изменяет соотношение тормозных усилий между колесами, обеспечивая эффективное торможение и курсовую устойчивость при поворотах.

Снижают риск ухода в занос и пробуксовки системы ESP и TCS. Тому, как они устроены, будет посвящен отдельный материал.

#Авто#Автоликбез

Подберите самые выгодные условия по КАСКО

Введите номер авто — данные заполнятся автоматически

или нажмите «Рассчитать», если еще не получили его

Рассчитать


Клим Ирхин

Автор

Mafin Team

Подписывайтесь на Telegram-канал Mafin Media и не упускайте новых знаний и возможностей!

Подписаться

Контуры подключения

Отказ тормозов всегда был самым большим кошмаром любого водителя. Поэтому инженеры давно придумали, как сделать, чтобы можно было остановить машину даже с поврежденной тормозной системой (а повредить гидравлическую систему проще, чем любую другую. Потек уплотнитель – и привет горячий).

Одним из вариантов страховки на случай отказа стало разнесение системы на два контура. Оказалось, двухконтурные тормоза это не так сложно, как могло быть, зато надежно и безопасно. Даже если один из контуров откажет, система продолжит работать, позволив избежать аварии.

Есть 5 вариантов компоновки контуров гидравлической системы:

  1. 4+2, параллельная со страховкой передней оси. Один контур запитывает все четыре колеса, второй – только два передних.
    тормозной диск и суппорт

    • барабанные;
    • дисковые.

    Существовала традиция устанавливать барабанные механизмы на задние колеса, а дисковые на передние. Сегодня в зависимости от модели могут ставиться одинаковые типы на все четыре колеса – или барабанные, или дисковые.

    Устройство и работа барабанного тормозного механизма

    Устройство системы барабанного типа (барабанный механизм) состоит из двух колодок, тормозного цилиндра и стяжной пружины, размещенных на щите внутри тормозного барабана. На колодки наклепаны или приклеены фрикционные накладки.

    Тормозные колодки своими нижними концами шарнирно закреплены на опорах, а верхними – под воздействием стяжной пружины – упираются в поршни колесного цилиндра. В незаторможенном положении между колодками и барабаном имеется зазор, обеспечивающий свободное вращение колеса.
    задние колодки
    Когда через тормозную трубку в цилиндр поступает жидкость, поршни, расходясь, раздвигают колодки. Они приходят в плотное соприкосновение с вращающимся на ступице тормозным барабаном, и сила трения вызывает торможение колеса.

    Необходимо отметить, что в приведенной конструкции износ передних и задних колодок происходит неравномерно. Дело в том, что фрикционные накладки передней по ходу движения колодки в момент торможения при движении вперёд прижимаются к барабану всегда с большей силой, чем задние. Как выход, рекомендуется менять колодки местами через определенный срок.

    Тормозной механизм дискового типа

    Устройство дисковых тормозов состоит из:

    1. суппорта, закрепленного на подвеске, в теле которого размещены наружный и внутренний тормозные цилиндры (может быть один) и две тормозные колодки;
    2. диска, который закреплен на ступице колеса.

    дисковые тормоза
    При торможении поршни рабочих цилиндров с помощью гидравлики прижимают тормозные колодки к вращающемуся диску, останавливая последний.

    Принцип работы тормозной системы

    Работа тормозной системы строится следующим образом:

    1. При нажатии на педаль тормоза водитель создает усилие, которое передается к вакуумному усилителю.
    2. Далее оно увеличивается в вакуумном усилителе и передается в главный тормозной цилиндр.
    3. Поршень ГТЦ нагнетает рабочую жидкость к колесным цилиндрам через трубопроводы, за счет чего растет давление в тормозном приводе, а поршни рабочих цилиндров перемещают тормозные колодки к дискам.
    4. Дальнейшее нажатие на педаль еще больше увеличивает давление жидкости, за счет чего срабатывают тормозные механизмы, приводящие к замедлению вращения колес. Давление рабочей жидкости может приблизиться к 10-15 МПа. Чем оно больше, тем эффективнее происходит торможение.
    5. Опускание педали тормоза приводит к ее возврату в исходное положение под действием возвратной пружины. В нейтральное положение возвращается и поршень ГТЦ. Рабочая жидкость также перемещается в главный тормозной цилиндр. Колодки отпускают диски или барабаны. Давление в системе падает.

    Важно! Рабочую жидкость в системе нужно периодически менять. Сколько тормозной жидкости потребуется на одну замену? Не более литра-полутора.

    Диагностика неисправности системы, проверка давления

    • Фейсбук
    • Твиттер
    • Гугл+
    • ЖЖ
    • ВКонтакте
    • Blogger

    Поскольку тормозная конструкция отвечает за безопасности водителя и окружающих его людей, следует ответственно отнестись к диагностическому осмотру с целью выявления неполадок.

    Рекомендуется для этих целей обратиться в специализированные станции технического обслуживания. Однако, первые признаки неполадок можно выявить и самостоятельно.

    • Фейсбук
    • Твиттер
    • Гугл+
    • ЖЖ
    • ВКонтакте
    • Blogger

    В современных транспортных средствах предусмотрена индикация состояния устройства. Приборы самостоятельно контролируют их и в случае проблем, своевременно известят о них водителю. При самостоятельной оценке следует проводить осмотр внешнего состояния системы на предмет целостности все конструктивных элементов.

    Можно также оценить работу системы по соответствию прилагаемой силы на педаль тормоза и ожидаемой тормозной реакции. Для предотвращения утечек или потери герметизации в системе необходимо контролировать в ней давление. Процедура проводится при помощи тестера.

    Ремонт системы и прокачка тормозной жидкости

    Педаль тормоза объединяет тормозной механизм с колодками, поэтому от исправности этого элемента зависит функционирование всей системы. Практически все её элементы не подлежат ремонту. При выходе их из строя они подлежат замене на новые комплектующие. Если все профилактические и ремонтные работы с устройством были проведены, а нажатие на педаль тормоза не соответствует ожидаемому эффекту, то необходимо сделать прокачку жидкости. Процедура реализуется с целью удаления из устройства воздушных элементов. Для этого необходимо:

    • Снять заглушку с штуцера.
    • Одеть на него шланг.
    • Опустить его конец в ёмкость, наполненную тормозной жидкостью.
    • Фейсбук
    • Твиттер
    • Гугл+
    • ЖЖ
    • ВКонтакте
    • Blogger
    • Нажать на педаль тормоза 4 раза. После последнего раза оставить её в активном состоянии.
    • Отвернуть штуцер и ожидать, пока воздух не начнёт вытесняться в жидкость, расположенную в бутылке. Его можно определить по специфическим пузырькам, выходящим из бутылки.
    • Фейсбук
    • Твиттер
    • Гугл+
    • ЖЖ
    • ВКонтакте
    • Blogger
    • Закрыть штуцер.
    • Повторить процедуру на каждом колесе.